

नेहरु युवा केन्द्र संगठन

Nehru Yuva Kendra Sangathan

स्वायत्तशासी संस्था युवा कार्यक्रम एवं खेल मंत्रालय भारत सरकार

an Autonomous Body under the Ministry of Youth Affairs & Sports Government of India

Date:- 28.07.2020

Ref. No. NYKS/ Spl. Projects/Namami Gange/20-21/15

From: M.P. Sharma, Deputy Director (Programme), NYKS

To: State Directors of Bihar, Uttarakhand, Uttar Pradesh and West Bengal

Subject: National Water Mission for rain water harvesting, storage and proper utilisation-reg.

Sir/Madam,

- Please refer to whatsapp message of Director General, NMCG, Ministry of Jal Shakti, Govt. of India in Namami Gange Group by which it has been informed that Ministry of Jal Shakti through National Water Mission has launched an important campaign to sensitize people for rain water harvesting, storage and proper utilisation. Rain water is very important for rejuvenation of big and small rivers for Aviral Ganga.
- It has also been informed that Namami Gange also wholeheartedly joins National Water Mission in this campaign. A
 PDF file on an approach for water conservation from National Water Mission is also attached for your ready reference.
- 3. You are requested to instruct all concerned District Youth Coordinators and DPOs working under Namami Gange Project for the following:
 - a) Spread the message and share suitable creative material/ messages
 - b) Instruct Gangadoots to motivate villagers to actively participate in campaign
 - Create some innovative E-Posters, Slogans etc and share amongst all stakeholders for awareness on different issues of water conservation.
- 4. Further, massive plantation drive should also be continued and efforts should be made to achieve the set target.
- 5. **Precautions:** While undertaking these activities, the youth should wear face mask, wash their hands on regular intervals, due care for personnel hygiene and maintenance of social distancing as well as while following the advisories and Guidelines issued by Government and District Administration. Further, as per local notifications, permissions for conducting activities may be sought from District Administration.

With sincere regards,

M.P. Sharma

Encl: as above

CC:

- PS to Director General, NYKS
- PS to Director General, NMCG, Ministry of Jal Shakti, Govt. of India, 1st Floor, Major Dhyan Chand National Stadium, India Gate, New Delhi – 110002

भूतल, 4 जीवन दीप भवन, संसद मार्ग, नई दिल्ली–110001 Ground Floor, 4 Jeevan Deep Building, Parliament Street, New Delhi-110001 Phone : 011-23442800

Scanned with Visitus at attp://www.nyks.nic.in

NYKS Namami Gange, India

Ajit UP Project Assistant Namami Gange, Akash Dixit DYC Bula...

5:35 PM

Q

+91 95822 25786 ~ Rajiv Ranjan Mishra

Dear friends! You all have been activly participating in several programs. The tree plantation/ Vriksharopan abhiyan has bee priority and rightly so in the season. As you may be aware, our Jal Shakti Mantralaya through National water Mission has launched an important campaign to sensitise prople for rain water harvesting, storage and proper utilisation. Rain water is very important for rejuvenation of water bodies, recharge of ground water, aquifers and in turn rejuvenation of rivers..big & small and for Aviral Ganga.

Namami Gange mission also wholeheartedly joins National Water Mission in this campaign and request you all to spread the message. We will be sharing creatives, material but you all are yourself capable of developing and carrying suitable messages creativly. With best wishes!

5:40 PM

+91 94531 02383 ~ Vinay Kumar Saxena

...

Type a message

Ų

NATIONAL WATER MISSION catchtherain.nwm@gmail.com

 $0_{\ell l_{l_{\tilde{r}}}}$

नमामि 000

Water covers around 70% of the Earth's surface; approximately 97.5% of it is saline and 2.5% freshwater.

97.5 %

Saltwater Oceans & seas

Freshwater is a global renewable resource available in almost all parts of the world that is critical to the survival of all organisms on the planet. It maintains its renewability as it goes through a continuous hydrological cycle. Water exists on earth in 3 forms viz., solid ice, liquid water, and gaseous water vapour.

We forget that the water cycle and the life cycle are one.

-Jacques Yves Cousteau

Ground water

MAJOR WATER ISSUES

Issues pertaining to water can be viewed at multiple levels i.e. at local, regional, national and global levels.

"If we pollute the air, water and soil that keep us alive and well, and destroy the biodiversity that allows natural systems to function, no amount of money will save us."

-David Suzuki

Major issues related to water, both quality and quantity, arises as a consequence of anthropogenic activities.

MAJOR WATER ISSUES IN INDIA

Growing water demand

Population growth, urbanisation and industrialisation; agricultural intensification and cultural changes have triggered an explosive increase in demand for water.

Reducing potential for exisiting supplies schemes

Rapid increase in water pollution has dire implications for the health and welfare of human beings.

Presence of industries has a manifold impact on the availability and quality of the existing sources of freshwater.

14 major rivers in India accommodate 82% of the country's total population, leading to major pollutants being released from domestic as well as industrial areas.

Dwindling water supplies

Indiscriminate exploitation of existing water supplies.

Increased levels of pollution in water & municipal waste.

Reducing scope for augmenting existing supply of surface water

Utilisation of existing surface water runoff is very low.

Scope for further augmentation of utilisation is low, existing sites are being intensively exploited, and social & environmental cost of further exploitation are very high.

Groundwater depletion

Groundwater is an essential part of livelihood of many, as well as acting as a drought-buffer.

Often polluted due to extensive usage of chemical fertilisers and pesticides in agriculture.

Vulnerable to the pollution caused in aquifers and surface water sources.

Dwindling supplies of natural freshwater

Soil erosion in catchment areas and subsequently accelerated siltation in reservoirs.

Irrigation systems connected to the reservoirs further add to the problems due to their lack of adequate maintenance, poor quality and reliability.

"VIRTUAL WATER'

The term used to describe the water utilised in the manufacture processes of various end products.

Extensive trade of virtual water, often affecting the balances of basins and regions. "Sustainability is not just about adopting the latest energy-efficient technologies or turning to renewable sources of power. Sustainability is the responsibility of every individual every day. It is about changing our behaviour and mindset to reduce power and water consumption, thereby helping to control emissions and pollution levels."

-Joe Kaeser

Anthropogenic activities

NEED

FOR

CONSERVA

Water withdrawal for activities like agriculture and energy production

Water degradation

Decline in water quantity and degradation of water quality

Sustainable water management

Need for development of strategies for sustainable water management

SUSTAINABILITY CRITERIA

- 1. Access to basic amount of water to ensure sustenance of human health and ecosystems.
- 2. Basic protection of renewability of water resources.
- 3. Water resources should maintain a certain minimum standard, which is subjective to the location and objective of use of water.
- 4. Human activities should not impair the renewability of freshwater stocks and flows
- 5. Data on water resource availability, use and quality should be collected and made available to all parties
- 6. Setting up of institutional recommendations for planning, management and conflict resolution.
- 7. Water planning and decision making should be a democratic process, involving all affected parties and fostering direct participation of affected interests.

STEPS FOR WATER CONSERVATION

Local level

- Regional level monitoring, like villages and distric
- Micro-planning and management of local water resources

Global level

- Monitoring across international borders
- Cooperation between nations and across borders to work towards sustainable development and management goals

National level

- Monitoring at country level
- Evaluation of national trends of water resources and incorporation in national policies

SALIENT FEATURES

- Traditional and basic step of water conservation strategies is to ensure percolation of water into the ground and preventing its run off into streams and rivers.
- Fundamental step towards conservation of water should be the efficient utilisation of the existing sources of water, especially in the agricultural and energy production industries, where there is a large potential for increased efficiency of water consumption and utilisation.

CLASSICAL METHODS OF WATER MANAGEMENT

Afforestation

- Slow down runoff with the help of trees and shrubs
- Avoid clear cutting

Rejuvenation of wetlands

- De-siltation
- Removal of encroachments
- Maintenance of inflow and outflow channels

Crop rotation

- Reduce water runoff
- Prevent exposure of soil to the atmosphere

Organic mulching

- Reduce water runoff improve water percolation
- Improve water
 percolation

Monitoring soil water content

- Maintenance of ground water table
- prevent soil erosion of dry soil particles

Rainwater harvesting structures

- Check dams
- Water harvesting pits

Rejuvenation of urban tanks

• Restoration of step wells, borewells and dug wells.

Prevent biomass removal from land

- Improves water retention of soil
- Prevents soil erosion

Water needs

- Adjusting water application according to specific crop needs
- Use of specific water delivery systems

Active stakeholder participation

- Education and awareness
- Liaising and networking

MODERN METHODS WATER CONSERVATION

Rural

The intent of water consumption in urban landscape is much more diverse than in an irrigated agriculture, and hence, the strategies must match the water requirements of the urban landscape

Water consumption and utilisation in a rural setting is mostly agriculture-centric, which becomes the focal point of water conservation strategies in the rural landscape

Rainwater Harvesting

- Storage of rainwater in surface or subsurface aquifers for future use.
- This is done in order to prevent loss of rainwater in the form of surface runoff.
- Often acts to augment the ground water reserves.

Groundwater conservation

Areas with scanty rainfall, the ground water table acts as the main source of water.

Since groundwater occurs in more quantity than surface water, and is more widespread, economically more viable, more sustainable and reliable, and relatively less vulnerable to pollution and drought than any other source of water.

Needs to be replenished and conserved, in order to act as a source of water not just for human civilisations, but also for natural ecosystems.

NOVEL WATER MANAGEMENT STRATEGIES

Science, technology and innovations are integral parts to sustainable water management strategies. Technological advances and trends are likely to benefit rapid and effective adaptation in the water sector. Many innovations and developments in sustainable water management are high-risk and with uncertain returns. Some of the novel techniques developed for water conservation are enlisted below.

Cybernetics and Artificial Intelligence

Smarter internet and instantaneous information technology

Nanotechnology

Non-traditional Energy Technology

Use of cost-effective, renewable energy sources with a low carbon footprint

Biotechnology

Genetic engineering to help feed the populace and save endangered species

Space-based Environmental Monitoring Systems

Instantaneous feedbacks to predictive models

Geo-engineering to reverse global warming

Giant reflectors in orbit, greening deserts, iron fertilisation of the sea, and aerosols in the stratosphere

Weather and Climate Prediction

Effective and reliable prediction of weather patterns

Desalinization

Cost-effective method to convert sea water into potable water for supply to coastal cities

Sanitation and Wastewater Treatment

Improved wastewater treatment methods, in order to recycle water and decrease consumption

Ecological Engineering

To preserve habitats, reverse species extinctions and combat invasive species

RS & GIS

Mapping of groundwater resources and sustainable extraction levels

Any land area that is saturated or flooded with water, either seasonally or permanently, that is static or flowing, fresh, brackish or saline, including areas of marine water the depth of which at low tide does not exceed six metres.

WETLAND CONSERVATION

Marine

Coastal wetlands, lagoons, rocky shores, coaral reefs

Lacustrine Associated with lakes

Estuarine

Deltas, tidal

marshes, mangrove swamps Riverine Along rivers and streams

Human-made

Farm ponds, irrigated agricultural lands, dam reservoirs

Palustrine Marshes, swamps

GANGA RIVER BASIN

The Indo-Gangetic floodplain is the largest wetland system in India, extending from the Indus River in the west to the Brahmaputra River in the east. The Ganga River basin, with an area of 8,61,000 km2, occupies approximately 26.3% of India's geographical area. The basin is spread across the 11 states viz. Himachal Pradesh, Uttarakhand, Uttar Pradesh, Delhi, Haryana, Rajasthan, Bihar, Jharkhand, Chhattisgarh, Madhya Pradesh, and West Bengal. The waters of the Ganga are extensively used for domestic, industrial and agricultural purposes, and hold high cultural, socio-economic, and ecological value. The basin shows a high degree of heterogeneity in terms of climate, geomorphology, soil, biogeography, culture and socio-economic structure. The Ganga River originates from the Gangotri glaciers in the Himalaya as the Bhagirathi River before being joined by the Alaknanda River at Devprayag. As it flows along its 2525 km length, the Ganga river is joined by a large number of tributaries on both the banks before it reaches the Bay of Bengal.

CONSERVATION METHODS FOR GANGETIC WATER

- Empowerment of appropriate institutions to monitor and implement need-based programs.
- Public and local community participation.
- Plantation campaign & Cleanliness drive.
- Awareness workshops and Community outreach programme.
- Workshop and trainings on Ganga and biodiversity conservation.
- Evolution of segmented implementation plan.
- Sewage treatment plants.
- · Promotion of forestry programs to prevent erosion problems.
- Regulated withdrawal of water from the river at various major towns and cities.
- River front development activities with garbage management on Ghats, removing floatables and maintaining cleanliness & hygienic status.
- Sub-surface flow constructed wetland Engineered wastewater treatment systems encompassing a variety of treatment modules including biological, chemical & physical processes. Construction of such wetlands along banks of the Ganga may act as a biofilter capable of removing high loads of nutrients & other pollutants from the river.
- Macrophytes are considered to be the main biological component, which play an important role in the treatment process.

Join us in our efforts for water conservation and water security for a better future

GACMC

Ganga Aqualife Conservation Monitoring Centre

Wildlife

Institute of India Post Box #18, Chandrabani Dehradun - 248001 Uttarakhand, India t.: +91 135 2640114-15, +91 135 2646100 f.: +91 135 2640117 Website link: https://wii.gov.in/nmcg/ news_events

Contact Details:

National Water Mission

Department of Water Resources, RD & GR, Ministry of Jal Shakti, 2nd Floor, Block-III, CGO Complex, Lodhi Road, New Delhi – 110003

E-mail:catchtherain.nwm@gmail.com

Wildlife Institute of India, Dehra Dun Dr. Ruchi Badola (ruchi@wii.gov.in)

Dr. Kuchi Badola (ruchi@wil.gov.in) Dr. S. A. Hussain (hussain@wii.gov.in) Dr. Sangeeta Angom (sangeeta@wii.gov.in)